3.65 \(\int (a+b e^x)^2 \sqrt {c+d x} \, dx\)

Optimal. Leaf size=145 \[ \frac {2 a^2 (c+d x)^{3/2}}{3 d}-\sqrt {\pi } a b \sqrt {d} e^{-\frac {c}{d}} \text {erfi}\left (\frac {\sqrt {c+d x}}{\sqrt {d}}\right )+2 a b e^x \sqrt {c+d x}-\frac {1}{4} \sqrt {\frac {\pi }{2}} b^2 \sqrt {d} e^{-\frac {2 c}{d}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {c+d x}}{\sqrt {d}}\right )+\frac {1}{2} b^2 e^{2 x} \sqrt {c+d x} \]

[Out]

2/3*a^2*(d*x+c)^(3/2)/d-1/8*b^2*erfi(2^(1/2)*(d*x+c)^(1/2)/d^(1/2))*d^(1/2)*2^(1/2)*Pi^(1/2)/exp(2*c/d)-a*b*er
fi((d*x+c)^(1/2)/d^(1/2))*d^(1/2)*Pi^(1/2)/exp(c/d)+2*a*b*exp(x)*(d*x+c)^(1/2)+1/2*b^2*exp(2*x)*(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2183, 2176, 2180, 2204} \[ \frac {2 a^2 (c+d x)^{3/2}}{3 d}-\sqrt {\pi } a b \sqrt {d} e^{-\frac {c}{d}} \text {Erfi}\left (\frac {\sqrt {c+d x}}{\sqrt {d}}\right )+2 a b e^x \sqrt {c+d x}-\frac {1}{4} \sqrt {\frac {\pi }{2}} b^2 \sqrt {d} e^{-\frac {2 c}{d}} \text {Erfi}\left (\frac {\sqrt {2} \sqrt {c+d x}}{\sqrt {d}}\right )+\frac {1}{2} b^2 e^{2 x} \sqrt {c+d x} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*E^x)^2*Sqrt[c + d*x],x]

[Out]

2*a*b*E^x*Sqrt[c + d*x] + (b^2*E^(2*x)*Sqrt[c + d*x])/2 + (2*a^2*(c + d*x)^(3/2))/(3*d) - (a*b*Sqrt[d]*Sqrt[Pi
]*Erfi[Sqrt[c + d*x]/Sqrt[d]])/E^(c/d) - (b^2*Sqrt[d]*Sqrt[Pi/2]*Erfi[(Sqrt[2]*Sqrt[c + d*x])/Sqrt[d]])/(4*E^(
(2*c)/d))

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2183

Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> In
t[ExpandIntegrand[(c + d*x)^m, (a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n},
x] && IGtQ[p, 0]

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rubi steps

\begin {align*} \int \left (a+b e^x\right )^2 \sqrt {c+d x} \, dx &=\int \left (a^2 \sqrt {c+d x}+2 a b e^x \sqrt {c+d x}+b^2 e^{2 x} \sqrt {c+d x}\right ) \, dx\\ &=\frac {2 a^2 (c+d x)^{3/2}}{3 d}+(2 a b) \int e^x \sqrt {c+d x} \, dx+b^2 \int e^{2 x} \sqrt {c+d x} \, dx\\ &=2 a b e^x \sqrt {c+d x}+\frac {1}{2} b^2 e^{2 x} \sqrt {c+d x}+\frac {2 a^2 (c+d x)^{3/2}}{3 d}-(a b d) \int \frac {e^x}{\sqrt {c+d x}} \, dx-\frac {1}{4} \left (b^2 d\right ) \int \frac {e^{2 x}}{\sqrt {c+d x}} \, dx\\ &=2 a b e^x \sqrt {c+d x}+\frac {1}{2} b^2 e^{2 x} \sqrt {c+d x}+\frac {2 a^2 (c+d x)^{3/2}}{3 d}-(2 a b) \operatorname {Subst}\left (\int e^{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x}\right )-\frac {1}{2} b^2 \operatorname {Subst}\left (\int e^{-\frac {2 c}{d}+\frac {2 x^2}{d}} \, dx,x,\sqrt {c+d x}\right )\\ &=2 a b e^x \sqrt {c+d x}+\frac {1}{2} b^2 e^{2 x} \sqrt {c+d x}+\frac {2 a^2 (c+d x)^{3/2}}{3 d}-a b \sqrt {d} e^{-\frac {c}{d}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {c+d x}}{\sqrt {d}}\right )-\frac {1}{4} b^2 \sqrt {d} e^{-\frac {2 c}{d}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {c+d x}}{\sqrt {d}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 134, normalized size = 0.92 \[ \frac {4 \sqrt {c+d x} \left (4 a^2 (c+d x)+12 a b d e^x+3 b^2 d e^{2 x}\right )-3 \sqrt {2 \pi } b^2 d^{3/2} e^{-\frac {2 c}{d}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {c+d x}}{\sqrt {d}}\right )}{24 d}-\sqrt {\pi } a b \sqrt {d} e^{-\frac {c}{d}} \text {erfi}\left (\frac {\sqrt {c+d x}}{\sqrt {d}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*E^x)^2*Sqrt[c + d*x],x]

[Out]

-((a*b*Sqrt[d]*Sqrt[Pi]*Erfi[Sqrt[c + d*x]/Sqrt[d]])/E^(c/d)) + (4*Sqrt[c + d*x]*(12*a*b*d*E^x + 3*b^2*d*E^(2*
x) + 4*a^2*(c + d*x)) - (3*b^2*d^(3/2)*Sqrt[2*Pi]*Erfi[(Sqrt[2]*Sqrt[c + d*x])/Sqrt[d]])/E^((2*c)/d))/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 133, normalized size = 0.92 \[ \frac {3 \, \sqrt {2} \sqrt {\pi } b^{2} d^{2} \sqrt {-\frac {1}{d}} \operatorname {erf}\left (\sqrt {2} \sqrt {d x + c} \sqrt {-\frac {1}{d}}\right ) e^{\left (-\frac {2 \, c}{d}\right )} + 24 \, \sqrt {\pi } a b d^{2} \sqrt {-\frac {1}{d}} \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {1}{d}}\right ) e^{\left (-\frac {c}{d}\right )} + 4 \, {\left (4 \, a^{2} d x + 3 \, b^{2} d e^{\left (2 \, x\right )} + 12 \, a b d e^{x} + 4 \, a^{2} c\right )} \sqrt {d x + c}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*exp(x))^2*(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/24*(3*sqrt(2)*sqrt(pi)*b^2*d^2*sqrt(-1/d)*erf(sqrt(2)*sqrt(d*x + c)*sqrt(-1/d))*e^(-2*c/d) + 24*sqrt(pi)*a*b
*d^2*sqrt(-1/d)*erf(sqrt(d*x + c)*sqrt(-1/d))*e^(-c/d) + 4*(4*a^2*d*x + 3*b^2*d*e^(2*x) + 12*a*b*d*e^x + 4*a^2
*c)*sqrt(d*x + c))/d

________________________________________________________________________________________

giac [B]  time = 0.42, size = 250, normalized size = 1.72 \[ -\frac {\frac {12 \, \sqrt {2} \sqrt {\pi } b^{2} c d \operatorname {erf}\left (-\frac {\sqrt {2} \sqrt {d x + c} \sqrt {-d}}{d}\right ) e^{\left (-\frac {2 \, c}{d}\right )}}{\sqrt {-d}} + \frac {48 \, \sqrt {\pi } a b c d \operatorname {erf}\left (-\frac {\sqrt {d x + c} \sqrt {-d}}{d}\right ) e^{\left (-\frac {c}{d}\right )}}{\sqrt {-d}} - 48 \, \sqrt {d x + c} a^{2} c - 16 \, {\left ({\left (d x + c\right )}^{\frac {3}{2}} - 3 \, \sqrt {d x + c} c\right )} a^{2} - 24 \, {\left (\frac {\sqrt {\pi } {\left (2 \, c + d\right )} d \operatorname {erf}\left (-\frac {\sqrt {d x + c} \sqrt {-d}}{d}\right ) e^{\left (-\frac {c}{d}\right )}}{\sqrt {-d}} + 2 \, \sqrt {d x + c} d e^{x}\right )} a b - 3 \, {\left (\frac {\sqrt {2} \sqrt {\pi } {\left (4 \, c + d\right )} d \operatorname {erf}\left (-\frac {\sqrt {2} \sqrt {d x + c} \sqrt {-d}}{d}\right ) e^{\left (-\frac {2 \, c}{d}\right )}}{\sqrt {-d}} + 4 \, \sqrt {d x + c} d e^{\left (2 \, x\right )}\right )} b^{2}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*exp(x))^2*(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-1/24*(12*sqrt(2)*sqrt(pi)*b^2*c*d*erf(-sqrt(2)*sqrt(d*x + c)*sqrt(-d)/d)*e^(-2*c/d)/sqrt(-d) + 48*sqrt(pi)*a*
b*c*d*erf(-sqrt(d*x + c)*sqrt(-d)/d)*e^(-c/d)/sqrt(-d) - 48*sqrt(d*x + c)*a^2*c - 16*((d*x + c)^(3/2) - 3*sqrt
(d*x + c)*c)*a^2 - 24*(sqrt(pi)*(2*c + d)*d*erf(-sqrt(d*x + c)*sqrt(-d)/d)*e^(-c/d)/sqrt(-d) + 2*sqrt(d*x + c)
*d*e^x)*a*b - 3*(sqrt(2)*sqrt(pi)*(4*c + d)*d*erf(-sqrt(2)*sqrt(d*x + c)*sqrt(-d)/d)*e^(-2*c/d)/sqrt(-d) + 4*s
qrt(d*x + c)*d*e^(2*x))*b^2)/d

________________________________________________________________________________________

maple [A]  time = 0.02, size = 144, normalized size = 0.99 \[ \frac {4 \left (-\frac {\sqrt {\pi }\, d \erf \left (\sqrt {-\frac {1}{d}}\, \sqrt {d x +c}\right )}{4 \sqrt {-\frac {1}{d}}}+\frac {\sqrt {d x +c}\, d \,{\mathrm e}^{\frac {d x +c}{d}}}{2}\right ) a b \,{\mathrm e}^{-\frac {c}{d}}+2 \left (-\frac {\sqrt {\pi }\, d \erf \left (\sqrt {-\frac {2}{d}}\, \sqrt {d x +c}\right )}{8 \sqrt {-\frac {2}{d}}}+\frac {\sqrt {d x +c}\, d \,{\mathrm e}^{\frac {2 d x +2 c}{d}}}{4}\right ) b^{2} {\mathrm e}^{-\frac {2 c}{d}}+\frac {2 \left (d x +c \right )^{\frac {3}{2}} a^{2}}{3}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*exp(x))^2*(d*x+c)^(1/2),x)

[Out]

2/d*(1/3*a^2*(d*x+c)^(3/2)+b^2/exp(c/d)^2*(1/4*d*(d*x+c)^(1/2)*exp(2*(d*x+c)/d)-1/8*d*Pi^(1/2)/(-2/d)^(1/2)*er
f((-2/d)^(1/2)*(d*x+c)^(1/2)))+2*a*b/exp(c/d)*(1/2*(d*x+c)^(1/2)*d*exp((d*x+c)/d)-1/4*d*Pi^(1/2)/(-1/d)^(1/2)*
erf((-1/d)^(1/2)*(d*x+c)^(1/2))))

________________________________________________________________________________________

maxima [A]  time = 2.49, size = 160, normalized size = 1.10 \[ \frac {16 \, {\left (d x + c\right )}^{\frac {3}{2}} a^{2} - 24 \, {\left (\frac {\sqrt {\pi } d \operatorname {erf}\left (\sqrt {d x + c} \sqrt {-\frac {1}{d}}\right ) e^{\left (-\frac {c}{d}\right )}}{\sqrt {-\frac {1}{d}}} - 2 \, \sqrt {d x + c} d e^{\left (\frac {d x + c}{d} - \frac {c}{d}\right )}\right )} a b - 3 \, {\left (\frac {\sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (\sqrt {2} \sqrt {d x + c} \sqrt {-\frac {1}{d}}\right ) e^{\left (-\frac {2 \, c}{d}\right )}}{\sqrt {-\frac {1}{d}}} - 4 \, \sqrt {d x + c} d e^{\left (\frac {2 \, {\left (d x + c\right )}}{d} - \frac {2 \, c}{d}\right )}\right )} b^{2}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*exp(x))^2*(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/24*(16*(d*x + c)^(3/2)*a^2 - 24*(sqrt(pi)*d*erf(sqrt(d*x + c)*sqrt(-1/d))*e^(-c/d)/sqrt(-1/d) - 2*sqrt(d*x +
 c)*d*e^((d*x + c)/d - c/d))*a*b - 3*(sqrt(2)*sqrt(pi)*d*erf(sqrt(2)*sqrt(d*x + c)*sqrt(-1/d))*e^(-2*c/d)/sqrt
(-1/d) - 4*sqrt(d*x + c)*d*e^(2*(d*x + c)/d - 2*c/d))*b^2)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+b\,{\mathrm {e}}^x\right )}^2\,\sqrt {c+d\,x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*exp(x))^2*(c + d*x)^(1/2),x)

[Out]

int((a + b*exp(x))^2*(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 3.21, size = 184, normalized size = 1.27 \[ \frac {2 a^{2} \left (c + d x\right )^{\frac {3}{2}}}{3 d} - \sqrt {\pi } a b \sqrt {d} e^{- \frac {c}{d}} \operatorname {erfi}{\left (\frac {\sqrt {c + d x}}{d \sqrt {\frac {1}{d}}} \right )} + \frac {2 a b \sqrt {c + d x} e^{- \frac {c}{d}} e^{\frac {c}{d} + x}}{\sqrt {d} \sqrt {\frac {1}{d}}} - \frac {\sqrt {2} \sqrt {\pi } b^{2} \sqrt {d} e^{- \frac {2 c}{d}} \operatorname {erfi}{\left (\frac {\sqrt {2} \sqrt {c + d x}}{d \sqrt {\frac {1}{d}}} \right )}}{8} + \frac {b^{2} \sqrt {c + d x} e^{- \frac {2 c}{d}} e^{\frac {2 c}{d} + 2 x}}{2 \sqrt {d} \sqrt {\frac {1}{d}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*exp(x))**2*(d*x+c)**(1/2),x)

[Out]

2*a**2*(c + d*x)**(3/2)/(3*d) - sqrt(pi)*a*b*sqrt(d)*exp(-c/d)*erfi(sqrt(c + d*x)/(d*sqrt(1/d))) + 2*a*b*sqrt(
c + d*x)*exp(-c/d)*exp(c/d + x)/(sqrt(d)*sqrt(1/d)) - sqrt(2)*sqrt(pi)*b**2*sqrt(d)*exp(-2*c/d)*erfi(sqrt(2)*s
qrt(c + d*x)/(d*sqrt(1/d)))/8 + b**2*sqrt(c + d*x)*exp(-2*c/d)*exp(2*c/d + 2*x)/(2*sqrt(d)*sqrt(1/d))

________________________________________________________________________________________